skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bauerle, Taryn L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The relationship between root, stem, and leaf hydraulic status and stomatal conductance during drought (field capacities: 100–25%) and drought recovery was studied in Helianthus annuus and five tree species (Populus×canadensis, Acer saccharum, A. saccharinum, Picea glauca, and Tsuga canadensis). Measurements of stomatal conductance (gs), organ water potential, and vessel embolism were performed and the following was observed: (i) cavitation only occurred in the petioles and not the roots or stems of tree species regardless of drought stress; (ii) in contrast, all H. annuus organs exhibited cavitation to an increasing degree from root to petiole; and (iii) all species initiated stomatal closure before cavitation events occurred or the expected turgor loss point was reached. After rewatering: (i) cavitated vessels in petioles of Acer species recovered whereas those of P. ×canadensis did not and leaves were shed; (ii) in H. annuus, cavitated xylem vessels were refilled in roots and petioles, but not in stems; and (iii) despite refilled embolisms in petioles of some species during drought recovery, gs never returned to pre-drought conditions. Conclusions are drawn with respect to the hydraulic segmentation hypothesis for above- and below-ground organs, and the timeline of embolism occurrence and repair is discussed. 
    more » « less
  2. As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme. 
    more » « less
    Free, publicly-accessible full text available October 16, 2026